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Self-consistent renormalisation in thermofield dynamics 

H Umezawa and Y Yamanaka 
Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, 
Alberta. TG6 251 Canada 

Received 15 August 1988 

Abstract. From the consideration of quasiparticles in thermal situations, we derive a 
universal expression of the self-consistent renormalisation condition in thermofield 
dynamics. This condition is valid even when the renormalised energy becomes time 
dependent, and provides us with four independent self-consistent equations for four real 
parameters, i.e. renormalised energy, dissipative coefficient, number density and a new 
degree of freedom x, which is a phase in thermal doublet space. 

1. Introduction 

In quantum field theory the concept of ‘quasiparticle’ plays a significant role. The 
Heisenberg field, (CIH,  which is controlled by a fundamental field equation, is realised 
in observation through a set of quasiparticle fields, $, which satisfy free field equations 
(i.e. linear homogeneous equations), say 

A(a)$ = 0. ( 1 . 1 )  
The state vector space is associated with the quasiparticles. We call the expression of 
(cIH, in terms of (Cl, the dynamical map and write it as (LH[$]. In the usual quantum 
field theory, the dynamical map is the Haag expansion in which the quasiparticle field 
is the incoming (or outgoing) field. 

Thermofield dynamics (TFD), which is a quantum field theory with thermal degrees 
of freedom, inherited the concept of quasiparticle from the usual quantum field theory. 
In TFD every degree of freedom is doubled (thermal doublet). The freedom of how 
the thermal doublet components of the quasiparticle mix ( (Cl”, @‘, p = 1,2) appears to 
be the thermal freedom. Since the structure has been summarised in many papers, it 
will not be repeated here. (For the equilibrium TFD see, for example, [ l ,  21. For the 
non-equilibrium TFD see, for example, [3,4].) It is due to the negative energy of the 
tilde quasiparticle that the energy in TFD is not lower bounded. This makes practically 
every quasiparticle unstable [4,5] (i.e. dissipative) in TFD. Thus, the study of the 
nature of the quasiparticle is significant in the development of TFD [3-61. 

In TFD, both the Heisenberg equation and the quasiparticle free equation are 
thermal doublet equations: 

When we use (Cl” and G” for the free fields in the interaction representation, we can 
identify [3,4] the interaction Hamiltonian, &( t ) ,  once a model Lagrangian is given. 

0305-4470/89/132461+ 13%02.50 @ 1989 IOP Publishing Ltd 2461 
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Following the gene@ steps of the interaction representation, we introduce the time- 
evolution operator V (  t, to) :  

in which to is the initial time: Q( t o ,  to)  = 1. We usually consider the limit to‘ -a. It 
is convenient to define also 

4 = Q(C0, -03). (1.5) 
When a time-dependent system approaches an equilibrium state at t = 03, a precise 
measurement of the single-particle state is possible only at equilibrium. (The meaning 
of time-dependent properties of quasiparticles during time change of the non-equili- 
brium s p e m  is not yet clear.) Thus, we become more interested in the dynamical 
map of S$; and $I& rather than $6 and 6; themselves. The dynamical map of S$; 
can be put in the form: 

( 1 . 6 ~ )  

(1.6b) 

where the dots stand for the higher-order normal products of quasiparticle fields. To 
avoid complication in use of symbols, we use 2 and 2 rather than the usual symbol 
Z ” 2  in (1.6). 

From the dynamical map (1.6), we are naturally led to the renormalisation condition 
(see explicitly (3.8)) corresponding to the mass (or energy) renormalisation in the 
usual quantum field theory. In TFD, this condition is a 2 x 2 thermal matrix equation 
and therefore should provide us with more information than the energy. Indeed, in 
studies of simple cases of a reservoir model [3] and a one-loop calculation [4,7], the 
renormalisation condition also led us to a differential equation for the particle numbers. 
However, a universal expression of the renormalisation condition in time-dependent 
thermal situations is not known and has not even been attempted so far. The purpose 
of this paper is to give this precise renormalisation condition and to report our results 
derived from it. 

2. The quasiparticles 

In this paper we consider only type-1 fields (i.e. fields without antiparticles). According 
to [3 ,4] ,  in which the canonical formalism of quasiparticle fields $” and J’ has been 
formulated, $’ and @‘ have the forms 

exp( -ik - x)&( t )  
d3k 

(2 . la)  

(2 . lb)  

Here ak( t )  and a,( t )  satisfy the equal-time canonical commutation relation: 

[ a, ( f ) p, 61 ( f ) ”I,, = 6 ( k - I )  
with U = +1 or -1  for bosons or fermions. 
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We now introduce [4] the quasiparticle creation and annihilation operators 
(&, t i ,  &, i:), which satisfy 

[ 6 k ,  = [ i k ?  i;1c7 = - I ) .  (2.3) 

The operators and 
and (01, are annihilated in the following way: 

c+-commute with 6 and 6’. The thermal ket and bra vacua, 10) 

&IO) = &IO) = 0 
(016: = ( O / { i  = 0. 

5 ’ = 6  g= 2 
p = 6’ f ’=  -ct 

The thermal doublets 6” and p are defined by 

( 2 . 4 ~ )  

(2.4b) 

( 2 . 5 ~ )  

(2.56) 

Note that these creation and annihilation operators are independent of t and that the 
state vector space of TFD is generated by their cyclic operations on 10) and (01. 

For the canonical properties (2.2) and (2.3) to hold simultaneously, a ( ? ) ”  and 
ii( t )  ” must be related to 5” and through a time-dependent Bogoliubov transfor- 
mation: 

Uk(f)” = 93-’(t, k ) @ ’ ” [ ;  ( 2 . 6 ~ )  

n k ( t ) ” = ~ ~ ~ ( f , k ) ” ” .  (2.66) 

The 2 x 2 matrix W is restricted by imposing a condition arising from the tilde conjuga- 
tion rules [ l ,  3,4], i.e. 

( 2 . 7 ~ )  

(2.7b) 

and the same ones for 6. Here T~ ( i  = 1-3) are the Pauli matrices. Under this restriction, 
93 can be quite generally factorised into a diagonal matrix E ( t )  and another time- 
dependent Bogoliubov matrix B(  t ) :  

(2.8) 
The matrix E ( t )  is expressed by two real parameters w and K which we identify as 
fully renormalised energy and dissipative coefficient, respectively: 

a( t ,  k )  = E - ’ (  t, k ) ~ (  t, k ) .  

E ( t, k ) = exp ( -i [,: ds [ w ( s, k ) - i K ( s, k ) 7J) . (2.9) 

The matrix B(  t, k )  is a function of the particle number n (  t, k )  which is defined as 

n(t ,  k )  = (Oldk( t ) ’ a k (  t)’lo). (2.10) 
The B ( t ,  k )  depends not only on n(t ,  k )  but also on the other free parameter (see 
[3,4]). Throughout this paper, we use the simplest expression: 

l + a n ( t , k )  -n(r ,k) ]  
1 

B( t, k )  = (2.11) 

It is a matter of convenience when one defines the time-dependent quasiparticle 
operators [3 ,4]  ( ( t ) ”  and f ( r ) ”  by combining E ( t )  with 6” and p: 

6( t)” = E ( t )@”6” (2.12a) 
(2.12b) f (  t)’ = ?E-’( t ) ’ ” .  
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With this definition, E ( t )  may be called the wavefunction of the quasiparticles. As 
(2.6) imply, a ( t ) ”  and c i ( r ) ”  are related to the quasiparticle operators through the 
time-dependent Bogoliubov transformation: 

a ( t ) ’ l  = B - ’ ( f ) + ” [ ( t ) ”  = B - ’ ( t ) p u E ( t ) “ ” [ ”  ( 2 . 1 3 ~ )  

c T ( f ) ’ l  = [ ( t )“B( t )“’ l=~E-’ ( t )““B( t )“’ l ’ .  (2.13b) 

The important observation here is that (01 TI(( t l )  ’lc( t2)Y]IO) never diverges for 
It, - t21 + 00 as long as K is positive in (2.9). This is true also for multipoint T-product 
Green functions consisting of a’l and G”, or of 4” and 4”. Any Green function other 
than the T-product ones diverges at infinite separation of time difference. 

The expressions in (2.1), together with (2.9), (2.11) and (2.13), lead to the following 
form of the operator A(a) in (1.3) for the quasiparticle free equation: 

Here 

(2.14) 

(2.15) 

(2.16) 

and 

T o = [ ;  3 (2.17) 

Equation (1.3) with (2.14) is derived from the Lagrangian density 

go= ~ ( x ) ” A ( d ) ” ” + ( x ) ” .  (2.18) 

The Lagrangian in (2.18) leads us to the Hamiltonian 

d3x[4”{w -iP}’””~“+c-number]. (2.19) 

The last c-number term in io( t )  is irrelevant to the canonical equations, but is necessary 
to preserve the tilde property of io: 

[ifio((t)l‘= iHo(t). (2.20) 

The Feynman propagator of ++ and 6” is explicitly given by 

UXl, x2) = --i(Ol 7-[~(xI)’lJl(x2)”110) 
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Here E,  is defined by 

E,( t l ,  t z ) =  E ( t , ) p g E - ’ ( t 2 ) F ~  ( p  is not summed) 

(for p = t )  ) 
‘1 

12 

=exp(  -i 1 [ w ( s ) T i ~ ( S ) ] d S  (2.22) 

Ew” being the elements of the matrix E in (2.9). 
Let us consider the Lagrangian for the Heisenberg field with the form: 

u H = + ’ H  i - -wo +H-v($H,+’H) (2.23) 

which completely governs the behaviour law of a given dynamicalAsystem. According 
to the general prescription for obtaining the total Hamiltonian, HH, in TFD [l ,  3,4], 
we have 

(2.24) 

where HH is derived from LEH, and fiH is its tilde conjugate. We now go to the 
interaction representation associated with the quasiparticle free field +. The A,, with 
IL,. and (LH being replaced by i,b and 6, respectively, will be denoted by 2. Then 
H = H - fi. The interaction Hamiltonian (see (1.4)) is then given by 

( aat ) 

A H  = H H  - f i H  

Aint( t )  = A( t )  - Go( t )  

= d3x{ V (  + I ,  6’) - V (  -U@, i,bz) 

+ $”[-so(t )  + i ~ ( t ) ] ~ ” i , b ~ }  (2.25) 
with 

-6w( t, k )  = WO( k )  - w (  t ,  k ) .  (2.26) 
In (2.25), the last term represents the counterterm. (There the c-number counterterm 
coming from I?’ in (2.19) was suppressed since it does not have any relevance in the 
following calculations.) 

The choice [3], (2.11), for the matrix B simplifies our computations because it 
leads to 

(Olk(t)=O (2.27) 
and 

(0lA0( t )  = 0. (2.28) 
Finally, from (2.25), (2.27) and (2.28), we obtain 

(OIfiint(t) = O  (2.29) 

(01 G(t, to) = (013 = (01 

which in its turn gives 

(2.30) 
where is defined in (1.5). 

3. The renormalisation condition 

The dynamical changes of state vectors in TFD are drastically different from those in 
the usual field theory. 
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In the latter case, the state vector space is constructed by the asymptotic (incoming 
or outgoing) fields which are the quasiparticle fields. These quasiparticles, as well as 
the vacuum state, are assumed to be stable: 

s-’lo) = 10) (3 . la)  

(3 . lb)  

( 3 . 1 ~ )  

(3 . ld)  

11) and S being an asymptotic single-particle state and the S-matrix operator. 
The quasiparticles fields with thermal degree of freedom cannot be the asymptotic 

fields. This can be seen from the presenfe of the K term in go in (2.19). This is 
because the spectrum of eigenvalues of H o  is not lower bounded but extends from 
-CO to CO. Though our choice, (2 .11) ,  of B led to (O l$= (01 (see (2.30)) in TFD, we have 

$-‘lo) # IO). (3.2) 
(Note that (2.30) does not give $-’IO) = IO) since 4 is not unitary in TFD.) Furthermore, 
the dissipation makes almost all of the quasiparticles unstable. 

The renormalisation condition provides us with a self-consistent way of establishing 
a definite quasiparticle picture. This is a condition applied to the transition matrix 
element of a Heisenberg field operator between the vacuum and a single quasiparticle 
state. A time-dependent non-equilibrium system usually approaches an equilibrium 
state at t =CO. Then, it may be that the quasiparticle may be measured as a single 
particle precisely at the equilibrium limit. (Before the system reaching the equilibrium, 
the meaning of the measurements is still not clear to us.) This naturally leads us to 
introduce the final-state quasiparticle operators (f” and @ 

= $-‘(”s^ (3.3a) 

@ = 4-1p”S (3 .3b)  
The renormalisation condition is to be applied to the matrix elements (lf(if)l+hIO) and 
(l,-(ir)$fiIO). Using (3.3),  we can rewrite these matrix elements as 

(3.4a) 

(3.4b) 

Here ( Idi f ) /  and ( l ( i ) l  stand for (Ol(F(& and (Ol(’(p), respectively. We are thus 
interested in the dynamical map of $+: in (1.6) rather than the one of +: itself. This 
argument is supplemented by the remark made in 0 2 that only the T-product Green 
functions are not troubled by the divergencies caused by exp(-Kt) factor but are 
convergent. The dynamical map of +: carries the retarded Green functions as the 
expansion coefficients, as is seen from the relation 

(3.5) 
On the other hand, the expansion coefficients in the dynamical map of $+: are the 
T-product Green functions: 

(lr(iT)~+H(x) ”10) = ( l ( i )~S+H(x)  ”10) 

( 1  r(Tf)~ i H  (x )  I.’ 10) = ( 1  ( i  )I jILH(x) ~ 10). 

(LH(X)” = Q - ’ ( f ,  -a )4 (x )”Q(? ,  -CO). 

c ( T - a ) $ H ( x ) ” =  T[?(T,-m)$(x)”] (3.6) 
where T > t .  For (3.6) to be valid for any f, T must be infinity. The same argument 
is applied to the dynamical map of $4:. Thus we get the combinations of ,$+(x)” 
and $(x)”. 
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To simplify our derivation of the renormalisation condition, we consider a model 

+L + eia  (LE ( 3 . 7 ~ )  

(LG+e-’a(LR. (3.7b) 

It has already been assumed that there is no breakdown of this symmetry in the 
expressions for the dynamical maps (1.6). In such a symmetric ca:e, two of four matrix 
elements in (3.4) vanish identically, and the other two, i.e. (ilS+t;lO) and (lS6filO), 
remain non-trivial. It follows immediately from the dynamical map (1.6) that these 
two matrix elements satisfy the relations: 

A( t, 8 )  P ( i 1 &brH( x ) ” IO) = 0 ( 3 . 8 ~ )  

( I I S & ~ ( X ) ~ I O ) A ( ~ ,  -2)’’ = o (3.8b) 

where A”” is given in (2.14) and the fields $rH and 6rH, called the renormalised 
Heisenberg fields, are defined as 

GrH(X)” = . - I (  ,,!e) py$H(X)y  ( 3 . 9 ~ )  

which preserves the symmetry under the following global phase transformation: 

(3.9b) 

respectively (see (1.6) for Z and 2).  The relations in (3.8) are called the renormalisation 
conditions; 

Since V( t, -CO) = 1 at t = -00, (3.5) gives the initial conditions 

$H(x) ’ = $(x)” a t t = - m  ( 3 . 1 0 ~ )  

(LH(x)” = Ir at t = --CO. (3.10b) 

In the usual quantum field theory, the self-energy loop diagrams create ( Z  - 1)$, giving 
rise to the Z+ term in the dynamical map. (Another way of formulation is to use the 
weak limit which gives G H +  Z$ at t = -00.) To avoid this complication we formulate 
the entire theory in terms of $rH and (ClrH (instead of (CIH and 6,) so that we have 

” = Ir a t t = - m  ( 3 . 1 1 ~ )  

6rH(x) ’  = i ( x )  at t = -CO. (3.11b) 
Then 0 is naturally made to satisfy 

$,H(X)’= ? ( t ,  -~)$h(x)’~(t,--CO) (3.12) 

etc, with e( t, -00) = 1 at t = --CO instead of (3.5). To achieve this, we replace GH and 
&H by and $,Z in the Lagrangian. Then, the interaction Lagrangian 2?int is given 
by 

gint(X) = v((z+)’, (62)’) - ~ ( - m ( 6 z ) ~ ,  (zl~)*) 
a 
at  

z - i - - z ~ w ,  + w - iP 

0 is given by (1.4) with Gint = -gint. In particular, is expressed as 

s = T [ exp (i 3int ci‘x)] 

(3.13) 

(3.14) 

With this redefinition of &, the whole of the previous argument remains unchanged. 
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4. An analysis of the renormalisation condition 

In this section we rewrite the conditions (3.8), putting them into a more manageable 
form, and derive from them a set of equations for a set of physical parameters. 

The matrices Z and z in (3.13), as a result of their appearance in (1.6), introduce 
new degrees of freedom in addition to the parameters o, K and n. In the first place, 
we see that Z and 2 are not independent because the tilde conjugation rules in (2.7) 
yield a constraint 

In deriving (4.1), it was considered that (2.7) holds true both for the quasiparticle field 
and the Heisenberg field. (This gives [ c( 1, -CO)]-  = ?( t, -CO).) We put Z in the form 

z = T 2 Z t T 2 .  (4.1) 

where ,y is a real parameter. Since the following approximation needs only the freedom 
in choice of x, we choose approximately pz = 1 in this paper. This leads to the simple 
relation 

= z = exp(ip,) .  (4.3) 
The freedom in choice of pz corresponds to the wavefunction renormalisation constant 
in the ordinary field theory. 

With the definition (?I = ( O l f :  and the relation (018 = 0, it is straightforward to 
show that (3.8a) is equivalent to 

for any t ‘ .  Here use was made of (2.lb), (2.9) and (2.136). By taking sufficiently large 
t’, we can rewrite it as 

A ( t , d ) ’ “ G ( x , x ’ ) “ ” = O  (4.5) 

where G is the time-ordered full propagator: 

(4.6) 
with the expressions (3.14) for 9 and (4.3) for Z and 2. Since G satisfies the Dyson 
equation: 

G(x, x’) p” = A(x, x’) ’” + dyl dy,A(x, ~ 1 )  ” “Z(y1,  Y~)“ ’G(Y~,  x’)’” 

where A is found in (2.21) satisfying 

and Z is the 2 x 2  matrix self-energy. Equation (4.5) is now 

G(X, x’) fi’ = -i(Ol T [ & ( x )  WXO~I~O) 

(4.7) 

A(t,  ~ ) “ “ A ( x ,  x’)“”= S(X-X’)S’” (4.8) 

0 = lim dy Z(x, y)  @“A(y, x’)“”E( t’)’’ (4.9) 

I 

r’+m I 
i E  (s)22 [ B-’(  s )  [ 0 0  

1] B(  t ) ]  “’ 
(4.10) 

after the substitution of (2.21). Here t and s are the time components of x and y, 
respectively. In (4.9) and hereafter, we suppress the momentum symbols, i.e. b/i or 
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k, until they are needed. The self-energy X is a sum of the loop contribution ZL and 
the counterterm 2,: 

Z ( x , x ’ ) = ~ ~ ( x , x ’ ) + ~ , ( x ,  x’). (4.11) 

According to (3.13), we have 

(4.12) 

Since the self-energy Z, is operating on A from the left in (4.9), we can replace Zc 
with Xgff considering (4.8): 
ZE*(x, x’) I”’ = {exp[2i~(  t ) ~ ~ ] [ u ~ -  w ( t )  +iP(  t )  + x (  ~ ) T ~ ] ) ~ ’ G ( X  - x’) (4.13) 

where (4.3) was made use of. 
Several matrix formulae are listed below to manipulate (4.9) or (4.10). Defining 

the matrices 

we write 

(4.14a) 

(4.14b) 

(4.15a) 

A ( t ) =  Tl-T2+2crn(r)~o (4.15 b) 

where A(?)  and .r0 are seen in (2.16) and (2.17), respectively. The matrices T,, T, and 
T~ form a closed algebra: 

T: = TI T i =  T2 (4.16a) 
T ~ = T ~ T ~ = T ~ T ~ = T ~ T , =  T2~,,=0 (4.16 b) 
T,T,= r0T2 = T ~ .  (4 .16~)  

Using these relations together with 
T~ T2 = - T2 (4.17a) 
T3To = 2 T2 To (4.17 b) 

exp(2i~7,)  T2 = exp( -2ix) T2 (4 .17~)  
e x p ( 2 i ~ t ~ ) ~ ~  = exp(2i,y).r0+ [ exp(2 i~ )  -exp(-2ix)]T2 (4.17d ) 

we obtain 

(4.18) 
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and 

+[-aE,(t, s>”-an(s)(Z,(t, s ) ” + a ~ , ( t ,  . S ) ~ ’ > ] ( T ~ +  T~)}~”’. (4.19) 

When (4.18) and (4.19) are used, the renormalisations condition (4.10) yields the 
following four independent real equations after a three-dimensional Fourier transforma- 
tion is performed: 

-Re I (  t ,  k ) 2  
1 + a n  ( t, k )  

-Re I( t ,  k ) ’  
n(t, k )  

w o ( k )  - w (  t ,  k )  - X ( t ,  k )  = 

w o ( k ) - w ( t ,  k )+/k j ( t ,  k ) =  

i{ [ 1 + 2 a n  ( t ,  k ) ] K ( t, k ) + mi ( t ,  k ) } = Im 

( 4 . 2 0 ~ )  

(4.206) 

I ( ? ,  k)*+ian(t ,  k ) K ( t ,  k )  (4 .20~)  

i[2n(t, k ) ~ (  t ,  k )  + n( t ,  k)] = ~m I (  t ,  k ) ’  +in(  t, k ) ~  ( t ,  k )  

where 

I ( t ,  k ) “  =exp[(-1)”2i~(t ,  k)] 

(4.20d) 

dsE2(s,  t ;  k )  I 
x{Z,(t, s; k)”’+n(s, k ) [ Z , ( t ,  s; k ) ” ’ + a Z L ( t ,  s)”’]} (a = 1,2)  (4.21) 

E2 being given in (2.22) and ZL(f, s; A)’”” defined by 

exp[ik (x  --y)]2,( t, s; k )  @”. (4.22) 
d3k 

We write (4.20) in such a manner that the left-hand sides and the right-hand sides 
come exclusively from the counterterms and the propagators, respectively. The 
equations in (4.20) form a closed set of equations to determine four parameters w, K ,  

n and x, while the right-hand sides of (4.20) are functionals of these parameters. Thus, 
these are the self-consistent equations on w,  K ,  n and x which follow from the 
renormalisation condition. 

We give an example of the calculation to show more clearly what (4.20) imply, 
using a model [4,7] of a fermion field CC, and a boson field 4 (both are of type 1) 
interacting with each other through the Yukawa-type interaction, g*’$q5 + HC. Quan- 
tities associated with CC, a?d 4 will be distinguished by the subscripts F and B, 
respectively. In this case, Tint in (3.13) has the following explicit form: 

Tint(x) = g{[exp(iXF) $‘l[eXP(iXF) $‘l[exp(iXB )( 4 ’ + $‘)I 
-[exp(-iXF)*21[eXp(-iXF)IL21[exp(-ixB)(42- $2)1} 

.ti” [exp(2ixf13)- l ] i - - e x p ( 2 i ~ ~ 7 ~ ) ( w ~ ~ + / k j ~ ~ ) + w ~  a t  a -iPF )@’*v ( 
[exp(2ixBT3)- a t  -ipB) 4’. 

@ V  a 

(4.23) 
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(4.25b) 

where A(t,  s; k ) w ”  is defined in (2.21). The expression (4.24) with (4.25) is put into 
(4.21), which appears in the right-hand side of (4.20). For example, ( 4 . 2 0 ~ )  is now 
explicitly 

w o ( k ) - w ( 4 k ) - i ( t , k )  

=ig2 Im( dsE2( t ,  k )  5 d j q e x P { i [ X ~ ( r ,  k ) - X ~ ( f ,  k - q ) - X ~ ( q ) l )  
(2.rr) 

([l-nF(s, k ) l  exp{-i[XF(s, k ) + X F ( S ,  k - q ) + X F ( s ,  e) ] )  

x A F ( t ,  S ;  k-q)22[AB(t ,  S; q)22+AB(S,  t ;  q )22  

+nF(s ,  k, exp{-i[XF(s, k)+XF(s ,  k - q ) + X F ( s ,  q)]} 

x AF(  t ,  s; k - q)21[AB( t ,  s;  qI2’ - A B ( %  t ;  q)I2]) [l  - nF(t,  k) ] - ’ .  (4.26) 

Similarly, the calculation for q5 can be done. Eventually we have eight simultaneous 
differential-integral equations for the parameters ( W F ,  K F ,  nF, x F )  and (w, ,  K B ,  n,, x , ) .  

1 

5. Conclusions 

In this paper we have presented a universal expression of the renormalisation condition 
(3 .8)  in time-dependent thermal situations of quantum field systems. The concept of 
quasiparticles in thermal doublet space played a crucial role in achieving it. The 
renormalisation condition thus obtained provides us with a closed set of four indepen- 
dent self-consistent equations (4.20) determining four real parameters W ,  K ,  n and x, 
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which are generally functions of t and k. The introduction of the new degree of 
freedom ,y is indispensable for consistency of the renormalisation condition. The ,y 
degree of freedom naturally appears in the dynamical map (i.e. in the language of 
quantum field theory) as we have seen, but it seems very difficult to identify it in the 
density matrix formalism (i.e. in the language of statistical mechanics). 

We gave the discussion only on the renormalisation condition corresponding to 
the energy (or mass) renormalisation in the usual quantum field theory, by choosing 
pz = 1 in (4.2). Another condition, corresponding to the wavefunction renormalisation 
which fixes the matrix pz, should be studied to complete the formalism. This problem 
still remains open. 

Equations (4.20) are very complicated to solve as they are simultaneous differential- 
integral ones. One systematic method of approximation to solve them is provided by 
a successive one [4,7] in which all the parameters are expanded around those at final 
equilibrium state: 

w ( t ) = w O + A w l ( t ) + A w 2 ( ? ) + .  . . ( 5 . 1 ~ )  
K ( ~ ) = K ~ + A K , ( ~ ) + A K ~ ( ~ ) +  ... ( 5 . l b )  
n( t )=no+Anl(r)+An2(t )+ .  . .  ( 5 . 1 ~ )  
X ( t ) = X o + A x l ( t ) + A X z ( t ) + .  . . .  (5 . ld)  

The subscript represents the power of coupling in the sense of perturbation calculation. 
When one calculates Aw,, etc, one uses the propagators with the parameters of order 
less than m. The iteration of this process improves the approximation order by order. 

As shown in [4,71, we exploited the successive approximation at one-loop level 
for a self-interacting quantum field system. There we ad hoc assumed the following 
renormalisation conditions on the self-energy: 

X ( t ,  k o =  w )  = C(ko= U ,  t )  = O  (5.2) 
for any t ,  where 

I( t ,  k,) = 5 exp( -ik,s)X( t, s)  ( 5 . 3 ~ )  

Z(ko, t )  = 5 Eexp(ik,s)X(s,  t )  (5 .3b)  

and obtained the expressions for w and K in this order and the master equation: 

ri(t)+2K[n( t )  - No] = 0 (5.4) 
where No is constant. Recall that the parameter ,y is not taken account of in [4,7]. 

Now we can repeat the same approximation for the renormalisation conditions 
(4.20), implying that the parameters on the right-hand side is of the zeroth order, 
particularly xo=,iO=O while those on the left-hand side is of the first one. From 
straightforward calculation, it turns out that the same result for w,  K and the master 
equation in (5.4) as in the preceding paragraph from (5.2) is derived as long as ,y = = 0 
holds. With (4.20) one can go to any higher orders step by step to reveal the short-time 
behaviour of the system, whereas (5.2) is no longer valid at the next order since then 
w becomes time dependent. 

The application of TFD to non-equilibrium phase transitions is quite important. In 
this case, the temporal change of the order parameter naturally makes w time dependent. 
For this reason, the universal condition (4.20) has been looked for. The study of phase 
transition is under progress when (4.20) is made use of. 
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Note added in prooj Our total Hamiltonian i, when expressed in terms of the renormalised fields defined 
by (3.9) and with the choice of (4.3), no longer has a Hermitian outlook due to the Z factor. Then (2.27) 
does not hold true and neither does (2.30), i.e. (01s # (01, although none of th,e results in the paper are 
influenced by this. We only have to change the definition of (l,(l,)l in (3.4) to ( O / S [ j ( f j )  instead of (O/[j($); 
otherwise the whole argument in this paper remains unchanged. We would like to thank Ian Hardman for 
pointing this out. 
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